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1. Introduction

An exact counting of BPS states in N = 2, d = 4 compactifications of (say type IIA)

string theory is a difficult problem. For large charges these objects have dual descriptions

as supersymmetric black holes. The leading and subleading order entropies of such black

holes in M-theory has been explained using the (0, 4) CFT on the effective string coming

from a wrapped M5-brane [1]. Herein we refine the analysis of [1] and consider the modified

elliptic genus (to be defined later) which counts BPS states of D4-D2-D0 system on a

generic Calabi-Yau threefold. As emphasized in [2 – 5], modular invariance imposes strong

constraints on the elliptic genus, and determines it completely in terms of a finite number

of coefficients in its q-expansion. In this paper we will use this fact to derive the exact

partition function of a basic class of BPS states in type IIA string compactified on the

quintic threefold. Our results shed light on the conjectured relation [6 – 16]–[17] between

the exact partition function of the black hole and the topological string amplitude.

An alternative approach - related by M/IIA duality - to count the degeneracy of D4-

D2-D0 bound states is to quantize the classical moduli space of supersymmetric D-brane

configurations. The latter involve wrapped D4-brane with fluxes bound to pointlike in-

stantons. The possible U(1) fluxes on the D4-brane are in 1-1 correspondence with divisors
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(an algebraic sum of holomorphic curves) on its world volume, and in particular involves

nontrivial information of Gromov-Witten invariants. We use this method to compute the

coefficients of the modified elliptic genus in the example of the quintic for small charges cor-

responding to the first few terms in the q-expansion. A priori, one might expect the results

to overdetermine the elliptic genus: in principle, a few of these numbers are sufficient to

determine the elliptic genus, and all other coefficients are predicted based on the modular

property. This would give a sharp test of the direct counting of supersymmetric D4-D2-D0

bound states. In the simple example we consider, the system of minimal D4-brane on the

quintic, this agreement requires highly nontrivial relations among Gromov-Witten invari-

ants of various degrees. Miraculously, we find this relation to hold in all the coefficients

we computed based on the geometry of the classical moduli space, up to a small ambiguity

due to singularities in the moduli space, corresponding to colliding pointlike D0 instantons.

We propose an approach to resolve this ambiguity, based on the relevant dual M-theory

AdS3 × S2 × CY attractor geometry [16]. In this picture the needed coefficients of the q-

expansion are supplied by the degeneracies of a few low-lying BPS states of gravitons and

wrapped (anti-)M2-branes. It is not clear to us why this dual picture should be valid, since

some of the charges are small in all of our our examples. Nevertheless, with this approach,

we find perfect agreement of the degeneracy of BPS states with the relations expected from

the modular property of the elliptic genus. (This in turns suggests that there should be

some justification for our approach.)

This approach sheds light on the conjecture [6] that the Gromov-Witten invariants are

captured by the black hole partition function. Here we see that the U(1) fluxes on the

D4-brane, which are related to curves in the CY subject to the constraint that it must lie

on the world volume of the D4-brane, carry information about Gromov-Witten invariants.

This extra constraint becomes unimportant for large D4-brane charges (a sufficiently high

degree hypersurface can be made to pass through any given collection of curves), in which

limit the (square of the) topological string partition function becomes a good approximation

of the black hole partition function.

In section 2, we describe the general structure of the modified elliptic genus of the MSW

(0, 4) CFT. We argue that the elliptic genus has simple anti-holomorphic dependence,

and can be determined by a finite number of holomorphic characters that transform in

a known representation of SL(2,Z). In section 3, we study the (0, 4) CFT for an M5-

brane wrapped on the hyperplane section in the quintic. We count the degeneracy of a

number of BPS states based on the classical moduli space of D-brane configurations, as

well as a hypothetical chiral ring structure motivated by a dilute gas approximation in the

AdS3 dual. These results are compared to the modular property of the elliptic genus, and

surprising agreements are found. In particular, we conjecture an exact expression for the

elliptic genus in this case. Section 4 studies a different example, a free Z5 quotient of the

Fermat quintic. In this case we present the structure of the elliptic genus as determined

by its modular property, although the direct counting based on the classical moduli space

is more difficult than the quintic, and is left to future work. We conclude in section 5.

Results related to those of section 2 on the structure of the modified elliptic genus

have been independently obtained by Denef and Moore [5], and de Boer, Cheng, Dijkgraaf,
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Manschot and E. Verlinde [4] .

2. The M5-brane (0, 4) CFT

We will be considering an M-theory 5-brane wrapped on a 4-cycle P in Calabi-Yau space

X, and extended in R1,4. The low energy excitations of the M5-brane can be described by

an effective 1 + 1 dimensional CFT [1], which has (0, 4) superconformal symmetry. If one

further compactifies the direction in which the M5-brane extends in R1,4 on a circle, one

obtains a wrapped D4-brane in type IIA string theory compactified on X. Excitations of the

M5-brane induce M2-brane charges and can carry momenta. These in general correspond to

D4-D2-D0 bound states in type IIA string theory. The correspondence between M5-brane

states and D4-D2-D0 bound states is understood and will be used freely in this paper.

In the following, we will follow the convention of [1] and denote by 6DABC the inter-

section numbers in a basis ΣA of H4(X,Z). The D4, D2, D0 charges will often be labelled

pA, qA, q0, respectively. DAB ≡ DABCpC , D ≡ DABCpApBpC , and DAB is the inverse

matrix of DAB. The attractor Kähler class of X is proportional to J = pAωA where ωA is

a basis of harmonic (1, 1) forms dual to ΣA.

2.1 General structure

The M5-brane (0, 4) CFT [1] has central charge cL = 6D + c2 · P , cR = 6D + 1
2c2 · P .

There are 3 noncompact bosons Xi on the left and right, corresponding to the collective

coordinates in the transverse R3. There are free bosons φA, coming from the world volume

anti-symmetric tensor field reduced on ωA. Namely

T ∼ DABdφA ∧ ωB (2.1)

The self-duality of T implies that ϕ = pAφA is purely right moving. Together with

four goldstinos ψ̃±±, corresponding to the four supersymmetries broken by the M5-brane,

(∂Xi, ∂ϕ, ψ̃±±) form a right moving N = 4 multiplet. The φA’s are compactified on a

lattice of signature (h1,1(X) − 1, 1), with the intersection pairing given by −1
6DAB, where

the (h1,1 − 1) bosons orthogonal to ϕ are left movers.

This CFT in fact has Ak+,∞ symmetry algebra (k+ = cR

6 ), which is a Wigner contrac-

tion of the large N = 4 superconformal algebra. Writing U = ∂ϕ, in addition to the small

N = 4 SCA relations, there are OPEs

G
αa

(z)U(0) ∼ ψ̃αa(0)

z

G
αa

(z)ψ̃βb(0) ∼ ǫαβǫab U(0)

z

J i
R(z)ψ̃αa(0) ∼

(σi)αβψ̃βa(0)

z
(2.2)

We will restrict to the case where X is a Calabi-Yau manifold of full SU(3) holonomy. Let

Λ = H2(P,Z) be the cohomology lattice of P . In general P may not be a spin manifold,

and Λ, which is self-dual, may not be even. In this case there is Freed-Witten anomaly [18],
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which requires one to turn on a half-integral flux 1
2c1(P ) in addition to integral fluxes on

the M5-brane world volume. We will write J = pAωA to represent the class of P itself, or

the cohomology class dual to P ∩P in H2(P ), which is the same as −c1(P ). One can write

a modular invariant theta function associated with the lattice Λ,

ΘΛ(τ, τ , y) =
∑

v∈Λ+ 1
2
J

(−)p·q(v)e−πiτv2
−
−πiτv2

++2πiq(v)·y (2.3)

Here v+ and v− are the self-dual and anti-self-dual projections of lattice vector v, or

equivalently, projections along J and J⊥. v2
± are defined using the intersection form on Λ.

q(v) is the natural projection of v from H2(P,Z) to H2(X,Z), corresponding to the M2/D2-

brane charge. Note that J is an characteristic element of H2(P,Z), hence v2 + q(v) · p ≡ 0

mod 2, (−)p·q(v) = 1 when Λ is even.

ΛX = H2(X,Z) is embedded in Λ as a sublattice. It consists of charge vectors with

qA = 6DABkB , kA ∈ Z. Λ⊥
X ⊂ Λ consists of only left-moving lattice vectors. The theta

function (2.3) can be decomposed as

ΘΛ(τ, τ , y) =
∑

δ

ΘΛ⊥

X
+δ(τ)ΘΛX+δ(τ, τ , y) (2.4)

where δ runs through a finite set of det(6DAB) shift vectors. The functions ΘΛX+δ, which

we will abbreviate as Θδ, can be written explicitly

Θδ(τ, τ , y) =
∑

qA=6DAB(kB+ 1
2
pB)+δA,kA∈Z

(−)p
AqA exp

[

2πiτ

12

(

pApB

D
− DAB

)

qAqB (2.5)

−2πiτ

12D
(pAqA)2 + 2πiyAqA

]

2.2 The modified elliptic genus

We are interested in computing a supersymmetric index of the (0, 4) CFT. The elliptic genus

vanishes, due to the degeneracy of Ramond ground state generated by the zero modes of the

goldstinos ψ±±
0 . As explained in the previous subsection, the CFT has symmetry algebra

Ak+,∞, which extends the small N = 4 superconformal algebra. One can define a modified

elliptic genus [19],

Z(τ, τ , y) = TrR
1

2
F 2(−)F qL0−

cL
24 qL0−

cR
24 e2πiyAQA (2.6)

where q = e2πiτ , QA are the charges associated with the free bosons φA, corresponding

to induced M2-brane charges on the M5-brane. F is a fermion number, which can be

identified with 2J3
R + pAQA, where JR is the right moving R-charge, and pAQA is the

contribution from the quantization of the self-dual 3-form field (this is an example of a

general phenomenon explained in [3]).

An important point is that not only the right moving ground states contribute to

Z. Let |0〉 be a ground state, then ψ̃±±
0 acting on |0〉 generates a multiplet of 4 states,

contributing 1 to TrF 2

2 (−)F . These states are annihilated by the supercharges G
±±
0 . Now
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consider a state of charge qA under the current jA = dφA, say |q〉 = eiDABqAφB |0〉. G
±±
0

acting on pAφA gives rise to its fermionic partners ψ̃±±
0 , and leave the left moving fields

invariant. Hence

(G
±±
0 − pAQAψ̃±±

0 )|q〉 = 0 (2.7)

This is simply saying that the state |q〉 preserves supersymmetries nonlinearly, and acting

with G
±±
0 doesn’t give rise to new states other than the multiplet generated by ψ̃±±

0 . This

is in accord with the fact that qA correspond to induced D2-brane charges, and D4-D2

bound states preserve different sets of supersymmetries than that of D4(-D0). Therefore

this multiplet also contributes 1 to the modified elliptic genus. In general the modified

elliptic genus Z receives contribution from states of charge qA with

(L0 −
cR

24
)|ψ〉 =

(pAQA)2

12D
|ψ〉 (2.8)

As in [9, 5, 4], the modified elliptic genus has the general form

Z(τ, τ , y) =
∑

δ

Zδ(τ)Θδ(τ, τ , y) (2.9)

where Θδ are given by (2.5). This structure can be argued using the fact that shifting

B-field by an integral amount on X does not change the degeneracy of D4-D2-D0 bound

states, but generates additional D2 and D0-brane charges, corresponding to a translation

in ΛX . Another way to think about (2.9) is that the theta function of the cohomology

lattice vectors of H2(P,Z) that do not correspond to conserved charges get completed into

holomorphic characters Zδ(τ) in the full CFT.

Θδ(τ, τ , y) form a modular representation in terms of weight (1
2 (h1,1(X)−1), 1

2) Jacobi

forms. The T transformation is represented by the matrix

TΘ
δλ = δδλ exp

(

−2πi

12
DABδAδB

)

(2.10)

The S transformation is represented by

SΘ
δλ =

1√
6D

exp

(

−2πi

6
DABδAλB

)

(2.11)

The modified elliptic genus of the MSW (0, 4) CFT is expected to be a weight (−3
2 , 1

2)

Jacobi form. The left weight −3
2 comes from the three noncompact bosons, and the right

weight is modified by the insertion of F 2 to −3
2 + 2 = 1

2 . Zδ(τ) transform under SL(2,Z)

with T = (TΘ)∗, S = (SΘ)∗ up to an overall phase that is easy to determine.

Knowing the modular representation of Zδ(τ), one can determine all of them from the

polar terms in the q-expansion of Zδ, where q = e2πiτ , via the generalized Rademacher

expansion. Equivalently, there is a basis of modular vectors transforming the same way as

Zδ(τ) with the most singular polar term q−
cL
24 , whose number is the same as the number

of possible polar terms of Zδ(τ). We will explore the constraints of modular invariance of

Z on the degeneracy of BPS states in the rest of this paper.
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3. BPS states on the quintic

In this section X will be the quintic 3-fold with a generic complex structure. We will study

the (0, 4) CFT associated with an M5-brane wrapped on the hyperplane section P in X.

J will refer to the hyperplane class. This CFT has cL = 55, cR = 30, and D = 5
6 .

3.1 A naive counting from geometry

Our strategy will be to count the D4-D2-D0 bound states of given charges (p = 1, q1, q0) by

computing the Euler character of the classical moduli space of the branes. The D4-brane

is wrapped on the hyperplane section P , and it is free to move in its moduli space P4. In

a supersymmetric configuration, the D2-branes are dissolved into fluxes on the D4 world

volume. We will assume that D0-branes can be either pointlike instantons (which can form

bound states among themselves) on the D4-brane world volume, or dissolve into smooth

U(1) fluxes.

One may attempt to describe the moduli space of classically supersymmetric D4-D2-D0

configuration as a fibration over the D4 moduli space, the fiber being the Hilbert scheme

of points on the D4-brane world volume etc. This is a useful approximation in the limit

of large D0-brane charges, but is difficult to apply for small charges. The reason is that

the D4-brane world volume degenerates in various loci in its moduli space. It turns out

that for the cases we will be computing, it is more useful to describe the moduli space by

first fixing the D0-branes, and consider the space of D4-branes that pass through these

D0-branes and admit certain classes of fluxes.

Due to Freed-Witten anomaly one must turn on half integral flux, say F = 1
2J , on the

D4-brane. We will call this the “pure” D4-brane. There is induced D2-brane charge 5
2 and

D0-brane charge [20, 21]

−χ(P )

24
− 1

2

∫

P
F ∧ F = −35

12

In the CFT this corresponds to a state with L0 = 0 and (L0 − cR

24 ) = (pAqA)2

12D = 5
8 . In

the following we will label states by their additional D2-brane charge ∆q1, as well as the

additional D0-brane charge ∆q0.
1

• ∆q1 = 0,∆q0 = 0 (L0 = 0)

This is the “pure” D4-brane, which is free to move around its moduli space P4. The

number of supersymmetric states is χ(P4) = 5.

• ∆q1 = 0,∆q0 = 1 (L0 = 1)

Next we consider the D4 bound to a single D0-brane. Requiring the D4-brane to

pass through the D0, the moduli space of D4-D0 is P3 fibered over X. It has Euler

character χ(P3)χ(X) = −800.

• ∆q1 = 0,∆q0 = 2 (L0 = 2)

1∆q0 is related to L0 and L0 by ∆q0 −
35
12

= (L0 −
cL

24
) − (L0 −

cR

24
) = (L0 −

55
24

) − 1
10

(∆q1 + 5
2
)2.
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Let us consider the D4 bound to 2 D0’s. The two D0-branes can either both be

free to move on the D4-brane world volume, or bind together as a single pointlike

object. The latter is counted the same way as the ∆q0 = 1 case, whereas the former is

described by the moduli space as P2 fibered over Sym2(X). We shall ignore the subtle

contribution from the locus in the moduli space where the two D0’s coincide. The

number of states, counted with sign, is then χ(P2)χ(Sym2(X))+χ(P3)χ(X) = 58900.

• ∆q1 = 0,∆q0 = 3 (L0 = 3)

The states with ∆q0 = 3 involves the D4 bound to 3 pointlike instantons, as well

as a D4-brane with flux F = C1 − C ′
1, where C1 and C ′

1 are two different degree 1

rational curves in X that lie in P , we write them for their dual harmonic forms on

P . The latter can happen only when P passes through both C1 and C ′
1. C1 and C ′

1

generically do not touch, and each have self-intersection number C1 ·C1 = −3.2 The

flux F gives rise to induced D0-brane charge −1
2F 2 = 3. Generically this condition

fixes a unique hyperplane, and we have 2875 × 2874 choices of C1 − C ′
1. These give

rise to (again, ignoring the subtlety where the D0’s coincide in the moduli space)

χ(P1)χ(Sym3(X)) + χ(P2)χ(X)2 + χ(P3)χ(X) + 2875 · 2874 = 5755150 (3.1)

states.

• ∆q1 = 1,∆q0 = 1 (L0 = 8
5)

Next we consider the D4 bound to a single D2-brane. This can be realized by turning

on a flux F = C1 on the D4-brane world volume (in addition to the original J
2 ),

where C1 is (dual to) a degree 1 rational curve. It gives rise to additional induced

D0-brane charge −1
2(F + J

2 )2 + 5
8 = 1. Requiring the D4-brane to pass through the

curve C1 reduces its moduli space from P4 to P2. There are 2875 degree 1 rational

curves C1. Our naive quantization of the classical moduli space doesn not determine

the overall fermion number of these states. However, we can fix the fermion number

by comparison with the holographic dual, and these states turn out to have an odd

fermion number.3 This description will be explored in the next section. In the end,

we get the counting χ(P2) · (−2875) = −8625.

Similarly, the same degeneracy applies to the states with ∆q1 = −1,∆q0 = 2 (L0 =
8
5).

• ∆q1 = 1,∆q0 = 2 (L0 = 13
5 )

Such states involve a D4 with flux F = C1 where C1 is a degree 1 rational curve, as

well as a pointlike D0 instanton. We don’t understand precisely what happens when

the D0-brane coincides with C1, and will again ignore this subtlety for now. When

2This follows from the adjunction formula, for a curve C in P , C · C + C · J = 2g − 2.
3A D4-brane with flux F = C1 corresponds to an M2-brane wrapped on C1 ⊂ X in the dual AdS3×S2

×X

geometry. The chiral primary state associated with this wrapped M2-brane is a fermion.
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the D0-brane is away from C1, the D4-brane that passes through both the D0-brane

and the curve C1 has moduli space P1. The number of states counted with sign is

(−2875) · χ(X)χ(P1) = 1150000.

• ∆q1 = 2,∆q0 = 1 (L0 = 12
5 )

The states with D2-brane charge ∆q1 = 2 has a minimal D0-brane charge 1, coming

from the D4-brane with flux F = C2, where C2 is a degree 2 rational curve. There

are 609250 such curves. Hyperplanes that pass though a degree 2 curve have moduli

space P1. We have degeneracy4 (−609250) · χ(P1) = −1218500.

• ∆q1 = 2,∆q0 = 2 (L0 = 17
5 )

The counting of such states receives three kinds of contributions: a D4 with flux

F = C1 + C ′
1 where C1, C

′
1 are degree 1 rational curves; D4 with flux F = C2 where

C2 is a degree 2 rational curve, bound to a D0 pointlike instanton; and D4 with flux

F = J − C3 where C3 is a degree 3 rational curve. The counting is (again, ignoring

the subtle case when the D0 coincides with C2)

1

2
2875 · 2874 + 2875 · χ(P2) + (−609250) · χ(X) + 317206375 = 443196375.

One might think that there is another contribution, coming from D4 with flux F =

J − C ′
3 bound to a single D0, where C ′

3 is a degree 3 genus 1 curve. These however

give rise to the same set of fluxes as F = C2.
5

3.2 Connection to topological strings

The M5-brane (0, 4) CFT is dual to M-theory on AdS3 × S2 × X attractor geometry [22,

16]. It was shown in [16] that the elliptic genus that counts the chiral primaries coming

from supergravity modes as well as CY-wrapped M2 and anti-M2 branes in the dilute

gas approximation reproduces the square of the topological string partition function on

X. The supergravity picture is not expected to be generally valid for small M5-brane

charges/fluxes, although some quantities may be BPS protected. However there appears

to be a rough correspondence between supersymmetric ground states of the D4-brane bound

to D2, D0-branes and multi-particle chiral primaries in AdS3:

pointlike D0 instantons ←→ massless supergravity modes (3.2)

flux F =
∑

i

Ci −
∑

j

C ′
j ←→ M2 wrapped on Ci, M2 wrapped on C ′

j (3.3)

4The sign, once again, is determined by comparison to the AdS3 dual.
5To see whether F1 = C2 and F2 = J − C′

3 are the same flux on P , one simply needs to check whether

(F−

1 − F−

2 )2 = 0, where F− is the anti-self-dual projection of F , F− = F −
1
5
(F · J)J . This is the case if

and only if C2 · C′

3 = 6. In fact, any C′

3 can be defined by the equations of the form P3(x
i) = 0, H1(x

i) =

G1(x
i) = 0, where P3 is a cubic polynomial in homogeneous coordinates xi on P

4, and H1, G1 are linear

polynomials. One can take H1 to be the hyperplane section P . The quintic equation must be of the form

P3(x
i)P2(x

i) + H1(x
i)Q4(x

i) + G1(x
i)R4(x

i) = 0. Now P2(x
i) together with H1, G1 define a degree 2

rational curve C2, which touches C′

3 at 6 points. Indeed, there are 609250 degree 3 genus 1 curves in the

quintic, the same as the number of degree 2 genus 0 curves.
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where Ci, C
′
j are holomorphic curves in X.

Under the spectral flow of Ak+,∞ algebra from NS to Ramond sector, which includes

L0 → L0 − J3
R + cR

24 and a shift of the membrane charges QA → QA + 3DABpB (see

also [4]), the chiral primaries flow to Ramond sector states of the form (2.7), (2.8). The

unitarity bound on the chiral primaries takes the form L0 = J3
R + (pAQA)2

12D . In particular,

since (JR)−1 flows to (JR)−0 , the chiral primaries are annihilated by (JR)−1 , and flow to

lowest SU(2)R weight states in the Ramond sector. For example, the AdS3 vacuum flows

to a lowest weight state of spin J3
R = − cR

12 . Together with the states obtained by acting

with ψ̃+±, this SU(2)R multiplet contributes to the modified elliptic genus with degeneracy

2(jR − 1
2) + 1 = 1

6cR = D + 1
12c2 · P (with the insertion of 1

2F 2 in (2.6) absorbed). This

is precisely the Euler character of the moduli space of a “pure” D4-brane of charge pA,

namely PD+ 1
12

c2·P−1.

The prescription to compute the elliptic genus is

Z(τ, τ , y) = Trch.pr.(−)F
(

cR

6
− 2J3

R

)

qL0−
cL
24 q

(p·Q′)2

12D e2πiyAQ′

A (3.4)

where Q′
A ≡ QA+3DABpB, and ( cR

6 −2J3
R) is the contribution due to the SU(2)R multiplets

described above.

We propose to compute the first few terms in the elliptic genus using the dilute gas

approximation in the AdS3. This involves a free gas of massless supergravity modes and

wrapped M2 and anti-M2-branes. They can carry angular momenta on the S2 as well as in

the AdS3. In this approach, one can determine the fermion number of the chiral primaries

corresponding to the wrapped M2-branes, as in [16], which is hard to determine by directly

quantizing the classical moduli space of D4-branes.

Let us denote by Oa
n,j the chiral primary operator dual to a graviton/hyper/vector

multiplet of spin j on the S2, and L0 − L0 = n; and OC
n,j (O−C

n,j ) the chiral primaries dual

to M2-brane (anti-M2-brane) carrying spin j and L0 − L0 = n.6 The L−1 descendants of

the chiral primaries are dual to holomorphic derivatives of the corresponding operators.

We have n = 1
2 for the massless hypermultiplets, n = −1, 0, 1, 2 for the graviton multiplet,

and n = 0, 1 for the vector multiplets. And n = 1
2 for an (anti-)M2-brane wrapped on

a rational curve [16]. In the case of the quintic, the contribution to the elliptic genus

from 204 hypermultiplets, 1 vector multiplet and 1 graviton multiplet is equivalent to 200

hypermultiplets.

In the following we redo the counting in the previous subsection using this dilute

gas approximation (in the chiral ring language), which does not have the ambiguity with

singularities of the classical moduli space of the D4-brane.

• q1 = 0, L0 = 1

There are 200 Oa
1
2
, 1
2

’s (counted with sign) that contribute, each giving rise to a

fermionic Ramond state of spin jR = 2 − 1
2 = 3

2 . Hence the contribution to the

6It would be useful to justify the chiral ring generators and (lack of) relations directly from the sigma

model description of the (0, 4) CFT [23].
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(modified) elliptic genus is −4× 200 = −800. This is the same answer as the one we

obtained from the “naive” counting.

• q1 = 0, L0 = 2

The states that contribute are given by operators of the form

Oa
1
2
, 1
2

Ob
1
2
, 1
2

, ∂Oa
1
2
, 1
2

, Oa
1
2
, 3
2

, of spin 1, 1
2 and 3

2 respectively. The counting is

then

3 ·
(

1

2
200 · 199

)

− 4 · 200 − 2 · 200 = 58500

Note that this differs slightly from the answer 58900 we obtained from the “naive”

counting.

• q1 = 0, L0 = 3

The states that contribute are given by operators of the form Oa
1
2
, 1
2

Ob
1
2
, 1
2

Oc
1
2
, 1
2

,

Oa
1
2
, 1
2

Ob
1
2
, 3
2

, Oa
1
2
, 1
2

∂Ob
1
2
, 1
2

, Oa
1
2
, 5
2

, ∂Oa
1
2
, 3
2

, ∂2Oa
1
2
, 1
2

, OC1
1
2
,1
O−C′

1
1
2
,1

. The counting is

−2 · (200 · 199 · 198/6) + (3 + 1) · 200 · 200 − (4 + 2 + 0) · 200 + 28752 = 5797625

• q1 = 1, L0 = 3
2 + q2

10 = 8
5

The operators that contribute are OC1
1
2
,1
, which gives rise to −3×2875 = −8625 states,

the same as the naive counting in the previous section.

• q1 = 1, L0 = 13
5

The operators that contribute are Oa
1
2
, 1
2

OC1
1
2
,1
, OC1

1
2
,2
, ∂OC1

1
2
,1
. The counting is

2 · (−200) · (−2875) + (3 + 1) · (−2875) = 1138500

• q1 = 2, L0 = 2 + q2

10 = 12
5

The operators that contribute are OC2
1
2
, 3
2

. The counting is the same as before, giving

rise to −1218500 states.

• q1 = 2, L0 = 17
5

The operators that contribute are Oa
1
2
, 1
2

OC2
1
2
, 3
2

, OC2
1
2
, 5
2

, ∂OC2
1
2
, 3
2

, OC1
1
2
,1
OC′

1
1
2
,1
, (OJO−C3)1,2.

7

The counting is then

(−200) · (−609250) + (2 + 0) · (−609250) + 2875 · 2874/2 + 317206375 = 441969250.

7Here O
J is a kind of spectral flow operator that shifts QA → QA +6DABpB (see also [4]). In particular,

it shifts the L0 value of O
−C3

1

2
,2

by (−3+5)2

10
−

(−3)2

10
= −

1
2
, and hence the resulting operator O

J
O

−C3 has

L0 − L0 = 1. This operator is reminiscent of the state coming from the D4-brane with flux F = J − C3 in

the previous subsection.
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3.3 Constraints from modularity

Based on the general structure of the modified elliptic genus (2.9), we can write for M5-

brane with charge p = 1 on the quintic X,

Z(τ, τ , y) =

4
∑

k=0

Zk(q)Θk(q, z) (3.5)

where

Θk(q, z) =
∑

n

(−)n+kq
1
2
5(n+ k

5
+ 1

2
)2z5n+k+ 5

2 , z = e2πiy. (3.6)

Using the results of our naive counting of BPS states based on the classical geometry of D4

with fluxes, we can write the first few terms of the q-expansion of the functions (Z0, Z1, Z2),

Zcl
0 (q) = q−

55
24 (5 − 800q + 58900q2 + 5755150q3 + · · ·)

Zcl
1 (q) = Zcl

4 (q) = q−
55
24

+ 3
5 (8625q − 1150000q2 + · · ·)

Zcl
2 (q) = Zcl

3 (q) = q−
55
24

+ 2
5 (−1218500q2 + 443196375q3 + · · ·) (3.7)

Alternatively, counting gravitons and wrapped (anti-)M2-branes in AdS3 in the dilute gas

approximation gives

Zc.r.
0 (q) = q−

55
24 (5 − 800q + 58500q2 + 5797625q3 + · · ·)

Zc.r.
1 (q) = Zc.r.

4 (q) = q−
55
24

+ 3
5 (8625q − 1138500q2 + · · ·)

Zc.r.
2 (q) = Zc.r.

3 (q) = q−
55
24

+ 2
5 (−1218500q2 + 441969250q3 + · · ·) (3.8)

Under SL(2,Z), the Θk’s transform as

(TΘk)(q, z) = e−πi(k
5
+ 1

2
)2Θk(q, z),

(SΘk)(q, z) =
4

∑

l=0

e−
2πi
5

klΘl(q, z) (3.9)

It follows that (Z0, Z1, Z2) form a modular representation, with T -transformation

T = e−2πi 55
24







1

ω3

ω2






(3.10)

and S-transformation

S =
1√
5







1 2 2

1 ω + ω4 ω2 + ω3

1 ω2 + ω3 ω + ω4






(3.11)

Knowing the T and S matrix, one can determine (Z0, Z1, Z2) solely from their polar terms

by the generalized Rademacher expansion. In our case, however, it is possible to identify

a basis of the exact modular forms, and hence determining (Z0, Z1, Z2) using any four of

the coefficients in their q-expansions to fix the three functions completely. This would
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provide a highly nontrivial check on our “naive” counting of BPS states (3.7), and the

improved (3.8).

As explained in the appendix, it is possible to construct three sets of modular vectors

(Ak(τ)), (Bk(τ)), (Ck(τ)), k = 0, . . . , 4, of weight 2, 4, 6 respectively, that transform under

SL(2,Z) with the same T and S matrix as those of (Zk(τ)) up to an overall phase, and

have no polar terms. A basis for weight −3
2 modular vectors in the same representation as

Zk and with the appropriate polar terms is given by

η−55AkE
6
4 , η−55AkE

3
4E2

6 , η−55AkE
4
6 , η−55BkE

4
4E6, η

−55BkE4E
3
6 , η−55CkE

5
4 , η−55CkE

2
4E2

6 .

(3.12)

where E4 and E6 are Eisenstein series. This basis consists of modular forms that

involve q−
55
24

+ 1
10

+ 1
2 term in Z1 and q−

55
24

+ 2
5 , q−

55
24

+ 2
5
+1 terms in Z2, which are clearly absent

by examining the allowed D-brane charges in the supersymmetric bound states. Taking

these terms into account, we have 7 possible polar terms in (Z0, Z1, Z2), which exactly

match the basis of 7 modular vectors (3.12).

It turns out that (3.7) almost fits in the q-expansion of the exact modular forms,

but has about 1% error in some of the coefficients. It seems clear that the numbers

5,−800, 8625 = 3×2875 and −1218500 = −2×609250 are obtained in unambiguous ways,

whereas in counting the other coefficients in (3.7) we ignored the subtlety when the D0-

branes coincide etc. By fitting the former four numbers with the basis (3.12), we find the

exact modular vectors

Z0(q) = q−
55
24 (5 − 800q + 58500q2 + 5817125q3 + 75474060100q4 + 28096675153255q5 · · ·)

Z1(q) = q−
55
24

+ 1
10 (8625q

3
2 − 1138500q

5
2 + 3777474000q7/2 + 3102750380125q9/2 · · ·)

Z2(q) = q−
55
24

+ 2
5 (−1218500q2 + 441969250q3 + 953712511250q4 + 217571250023750q5 · · ·)

(3.13)

This is surprisingly close to (3.7) obtained by the “naive” counting of D4-D2-D0 bound

states. Even more surprisingly, the first three coefficients in Z0(q) and the first two coeffi-

cients in Z1(q), Z2(q) exactly match the answer obtained from the dilute gas approximation

in AdS3 (3.8)! One may also view this result as an exact “prediction” of the Gromov-Witten

invariants of genus 0, degree 2 and 3, from the modular invariance of the modified elliptic

genus.

Note that the fourth term in the q-expansion of Zc.r.
0 (q) in (3.8) differ slightly from the

one in (3.13). This mismatch might be due to corrections to the dilute gas approximation,

or equivalently, the chiral ring relations we have assumed. It would be nice to understand

this precisely.

We conjecture that (3.13) gives the exact modified elliptic genus of the M5-brane CFT

on the quintic with p = 1. In closed form, using the modular forms defined in the appendix,

we can write (equivalent to (3.13))

Z(τ, τ , y) =
1

16η55

[

(20E6
4 + 24500E3

4∆ − 10703200∆2)P0(τ, τ , y) (3.14)

+(−225E5
4 + 167375E2

4∆)P1(τ, τ , y) + (125E4
4 − 89875E4∆)P2(τ, τ , y)

]
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where ∆ = η24, η,E4, E6 are understood to be functions of τ .

4. The Z5 quotient

Now let us consider a different example, with the Calabi-Yau X being the Fermat quintic
∑5

i=1 x5
i = 0 modded out by the freely acting symmetry Z5, generated by xi 7→ ωixi where

ω = e2πi/5. This CY space has intersection form 6D111 = 1 instead of 5 for the quintic. We

shall consider the M5-brane wrapped on the 4-cycle of charge p = 1 and p = 2 respectively.

4.1 p = 1

A p = 1 divisor P1 ⊂ X takes the form xi = 0. Unlike the case of quintic, now P1 is

rigid, and there are five of them. χ(P ) = 11, J · J = 1. There is only one term in the

expression (2.9) for the modified elliptic genus Z(τ, τ , y). In fact, it is completely fixed by

its modular weight (−3
2 , 1

2) and its polar term 5q−
11
24 ,

Z1(τ, τ , y) = 5η(τ)−11E4(τ)θ1(τ , y). (4.1)

Note that E4(τ) is also the theta function of the E8 root lattice Γ8. This result admits a

very simple explanation. The factor η−11 comes from the partition function of D0 pointlike

instantons on P1, which counts the Euler character of the Hilbert scheme of points on P1.

E4(τ) = θΓ8(τ) counts the various way of dissolving D0-branes into fluxes F ∈ H2(P1,Z)

such that F · J = 0. In fact, we have the decomposition

H2(P1,Z) = {α − (α · J)J} ⊕ ZJ (4.2)

The anti-self-dual part of the lattice is even, hence must be −Γ8.

4.2 p = 2

In this case, the degree 2 divisor P2 can be defined by polynomial of the form ax1x4 +

bx2x3 +cx2
5 = 0 and four other similar quadratic polynomials. χ(P2) = 28, J ·J = 2. There

is no Freed-Witten anomaly in this case. We can write the modified elliptic genus in the

form

Z2(τ, τ , y) = Z0(τ)θ3(2τ , y) + Z1(τ)θ2(2τ , y) (4.3)

where Z0(τ) = q−
28
24 (a0 + a1q + · · ·), Z1(τ) = q−

28
24

+ 1
4 (b0 + b1q + · · ·). a0, a1, b0 are the

only polar coefficients. It is again possible to write a basis for the exact modular vectors.

Although, we have not been able to count higher coefficients directly from the classical

moduli space of the D4-D2-D0 bound states, and hence cannot check them against the

constraints from the modular invariance of Z2(τ, τ , y).

5. Conclusion

We see from the very basic example, the p = 1 M5-brane on the quintic, that modular

invariance imposes powerful constraints on the degeneracy of BPS states, which encodes

highly nontrivial relations of enumerative geometric invariants. In fact, the coefficients of
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the M5-brane elliptic genus can be thought of a class of new geometric invariants, which

generalizes Gromov-Witten invariants. The M5-brane elliptic genus also gives a natural way

of associating modular forms with (M-theory) attractor Calabi-Yau threefolds, which might

or not have interesting connections to the modularity of arithmetic algebraic varieties.

Let us list a few problems to be studied subsequently:

• Going beyond the dilute gas approximation in counting chiral primary states in

AdS3 × S2 × X. In particular, it would be nice to understand the chiral ring re-

lations, say from the sigma model description of the (0, 4) CFT.

• To understand the singularities in the classical moduli space of D4-brane with fluxes,

and their contributions to the BPS D4-D2-D0 bound states. This would allow a

general definition of the relevant enumerative geometric invariants.

• Extending our counting of BPS states to M5-branes of higher degrees, i.e. p > 1, on

the quintic; as well as to other Calabi-Yau manifolds. In particular, it would be nice

to count the BPS states on the Z5 quotient of the Fermat quintic and compare to

the modular property of the p = 2 elliptic genus. We expect the fragmentation of the

BPS states to play a role here.
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A. A basis of modular vectors

In this appendix we will construct explicitly a basis of modular vector of weight −3
2 in

the same representation of Zk(τ) (appearing in the elliptic genus of M5-branes wrapped

on the hyperplane section in the quintic) and of the same polar terms. Alternatively, we

can construct a basis for the modular form Z(τ, τ , y) directly. Let us start with the theta

functions relevant for the right-moving sector of the p = 1 elliptic genus for the quintic are

Θk(τ , y) =
∑

n∈Z

q
1
10

(5n+k+ 5
2
)2z5n+k+ 5

2 (−1)n+k (A.1)

where q = e2πiτ , z = e2πiy.

From unitarity of the S and T matrices, it follows that

4
∑

k=0

Θk(τ, s)Θk(τ , y) (A.2)

transforms as a weak Jacobi form of weight (1
2 , 1

2 ).
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Specializing (A.2) to s = τ
2 , s = τ+1

2 , s = 1
2 gives rise to three basic functions,

S2(τ, τ , y) = e5πiτ/4
4

∑

k=0

Θk

(

τ,
τ

2

)

Θk(τ , y)

S3(τ, τ , y) = ie5πiτ/4
4

∑

k=0

Θk

(

τ,
τ + 1

2

)

Θk(τ , y)

S4(τ, τ , y) = i

4
∑

k=0

Θk

(

τ,
1

2

)

Θk(τ , y) (A.3)

They transform under S and T as

S4 ←→S S2 ←→T S3 (A.4)

whereas S4 and S3 transform to themselves under T and S, respectively. (S2, S3, S4)

transform in exactly the same way as the Jacobi theta functions (θ2, θ3, θ4), which are also

the specialization of the weak Jacobi form θ1(τ, s) at s = 1
2 , s = τ+1

2 , s = τ
2 , multiplied by

prefactors similar to the ones in (A.3).

Hence GSO projection can be used to make modular invariant expressions. In partic-

ular,

Pn(τ, τ , y) =

4
∑

i=2

θi(τ)8n+3Si(τ, τ , y) (A.5)

is a weak Jacobi form, of weight (4n + 2, 1
2 ).

The space of all possible weak Jacobi forms of the form

4
∑

k=0

Zk(τ)Θk(τ , z) (A.6)

with the appropriate polar terms for Zk as described in section 3 is a module with coeffi-

cients being holomorphic modular forms. The three simplest expressions P0, P1, P2 are a

basis for this module.

A complete set of possible Jacobi forms in this module with a q expansion starting at

q−
55
24 and of weight (−3

2 , 1
2 ) is

E4(τ)6P0

η(τ)55
,
E4(τ)3P0

η(τ)31
,

P0

η(τ)7
,
E4(τ)5P1

η(τ)55
,
E4(τ)2P0

η(τ)31
,
E4(τ)4P2

η(τ)55
,
E4(τ)P2

η(τ)31
(A.7)

It is convenient to write a basis for the 5-dimensional modular vector Zk(τ), instead

of the function (A.6). This basis can be extracted from (A.7). Alternatively (and equiv-

alently), one can directly construct three holomorphic modular vectors, Ak(τ), Bk(τ) and

Ck(τ), which transform in the same modular representation as Zk(τ), but have weight 2,
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4 and 6. One can start by defining

A0(τ) =

4
∑

i=2

θi(τ)3θi(5τ),

B0(τ) =

4
∑

i=2

θi(τ)7θi(5τ),

C0(τ) =

4
∑

i=2

θi(τ)11θi(5τ). (A.8)

The rest of Ak, Bk, Ck (k = 1, . . . , 4) can be obtained by modular transforms of (A.8). One

can check that the resulting functions indeed form 5-dimensional modular representations,

which may not be immediately obvious by this construction. Knowing Ak, Bk, Ck, one can

then multiply them by η(τ)−55 times weight 24, 22, 20 holomorphic forms respectively, to

obtain a basis for Zk(τ), as shown in section 3.3.
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